
Raspberry Pi and Arduino – a perfect
couple for control education

Jaroslav Sobota ∗ Roman Pǐsl ∗∗ Pavel Balda ∗∗∗

Miloš Schlegel ∗∗∗∗

∗ European Centre of Excellence
NTIS - New Technologies for Information Society

Faculty of Applied Sciences, University of West Bohemia in Pilsen
Univerzitńı 8, 301 00 Plzeň, Czech Republic

(e-mail: jsobota@kky.zcu.cz)
∗∗ (e-mail: rpisl@kky.zcu.cz)

∗∗∗ (e-mail: pbalda@kky.zcu.cz)
∗∗∗∗ (e-mail: schlegel@kky.zcu.cz)

control education; control equipment; real-time; closed-loop control

Abstract: Nowadays the control education usually heavily relies on the available simulation
packages and virtual laboratories, both of which have their irreplaceable position in the
educational process. But unfortunately the closed loop experiments are way too often limited
to these virtual domains and the students lack the physical feedback about the impact of
control algorithms and its parameters. The reasons might be the price of the hardware setup
to demonstrate the control algorithms physically or a complicated transition from simulation
to real-time platform. This paper describes an extremely inexpensive, straightforward and
surprisingly powerful platform for implementation of real-time control algorithms. The platform
consists of an Arduino board and a Raspberry Pi running the REX Control System. The Arduino
board is used for interaction with the physical world via its inputs and outputs. The REX
Control System allows the students to develop and verify the control algorithms in Simulink
and then run it in real-time by a few mouse clicks. However, the REX Control System is by
no means dependent on Simulink, it is fully functional even if Simulink license is not available.
The platform further bridges the gap between the virtual and physical worlds as it is tightly
connected to PIDlab.com and Contlab.eu portals, which makes it an ideal choice for control
education purposes.

1. INTRODUCTION

Nowadays the control education usually heavily relies on
the available simulation packages and virtual laboratories,
both of which have their irreplaceable position in the
educational process. But unfortunately the closed loop
experiments are way too often limited to these virtual
domains and the students lack the physical feedback about
the impact of control algorithms and its parameters. The
reasons might be the price of the hardware setup to demon-
strate the control algorithms physically or a complicated
transition from simulation to real-time platform.

This paper describes an extremely inexpensive platform,
which solves all the above mentioned problems. The plat-
form was developed at a university, initially for internal
use, but it soon found its way to other universities, high
schools and even hobbyist and DIY communities, which
are natural (or rather essential) part of the Arduino 1

and Raspberry Pi ecosystems 2 . The mentioned microcom-
puters, which the platform is based on, form a perfect
couple for control education, combining the computational

1 Arduino is a trademark of Arduino Team.
2 Raspberry Pi is a registered trademark of the Raspberry Pi
Foundation.

power, onboard memory and Ethernet connectivity of the
Raspberry Pi and relatively rich input-output capabilities
of the Arduino board.

Integral part and the main advantage of the presented
platform is the software, which turns these two boards into
an industrial programmable controller (at least from the
educational point of view) as it allows the students/users
to create control algorithms using the same software tools
and workflow concepts, which are used when developing
control algorithms for true industrial controllers and con-
trol systems.

Although the current versions of MATLAB/Simulink or
LabVIEW support the Arduino and Raspberry Pi boards
to some extent, the platform presented in this paper offers
additional functionality and wider input possibilities.

2. STRUCTURE OF THE PLATFORM

The educational control platform consists of an Arduino
microcontroller board and a Raspberry Pi computer with
the runtime of the REX Control System installed [Balda
et al., 2005]. The platform is known as REXduino and
it is depicted in Fig. 1. The individual components are
discussed in the following sections.



Fig. 1. The REXduino educational platform

2.1 Arduino board

The Arduino is a well-known open-source electronics pro-
totyping platform, which is a central control unit of many
embedded control applications ranging from interactive
clothing to robotics and 3D printers. In our case the board
is programmed to act as a slave and its inputs and outputs
are used for interaction with the physical world. Currently
the Arduino UNO, Arduino MEGA2560 and Seeeduino
Mega boards are supported but the sketch 3 can be easily
modified for other boards.

The Arduino receives commands from the master via
USB connection, performs the requested operations and
responds to the master. The response may contain just a
confirmation or the requested data. The communication
protocol is described below in more detail.

Just like in all industrial slave devices, a watchdog timer
can be enabled in the Arduino. The watchdog timer is a
safety mechanism for the cases when the communication
with the master is lost and every student of automatic
control should be experienced in using this mechanism.

2.2 Raspberry Pi

The Raspberry Pi is a fully featured credit-card sized
computer which is capable of running applications just like
a standard desktop PC. The device is based on Broadcom

3 The term used in Arduino environment for the set of files forming
the project to be compiled.

BCM2835 SoC, which contains a 700 MHz ARM1176JZFS
CPU with hardware floating point unit. Onboard memory
is 512 MB. Although initially developed to increase in-
terest in programming and software engineering, it soon
became accepted as a universal programmable control
unit for many machines and M2M applications. Several
operating systems have been ported to the Raspberry Pi,
an optimised version of Debian Linux known as Rasp-
bian is probably the most popular one. The 35$ model
B thus offers everything what is required for a modern
programmable controller - enough computational power
and memory, Internet connectivity and permanent data
storage on a SD card.

In our case the Raspberry Pi acts as the main control unit.
It is a master for the Arduino. The Arduino appears as a
standard serial port upon connecting it to the Pi with the
USB cable so the commands are sent as soon as they are
written to the appropriate serial device.

Although several expansion boards for Raspberry Pi like
Gertboard [The Raspberry Pi Foundation, 2012a], Pi-
Face [University of Manchester, 2012] or Quick2Wire Inter-
face Board [Quick2Wire, 2012] are available, the master-
slave combination with the Arduino mimics the standard
structure of large industrial control systems with remote
I/O units. Plus it has additional advantages which will be
discussed later.

2.3 REX Control System

The REX Control System is an open and scalable system,
which is suitable for embedded control. REX can be
easily ported to different platforms with C and C++
language compilers, from dedicated control cards and
simple real-time executives to process stations equipped
with standard operating systems. Recently it has been
ported to Raspbian.

The REX Control System is formed by a family of products
for the design, development and deployment of industrial
control systems. By installing RexCore, the runtime of the
REX Control System, the Raspberry Pi is turned into a
modern programmable controller. RexCore takes care of
timing and execution of individual control tasks, which
can have individual priorities and execution periods.

The individual control tasks can be created in RexDraw
graphical development environment or in Simulink. In
both cases the control algorithms are created by in-
terconnecting function blocks from various libraries of
the RexLib industrial blockset (analog signal processing,
logic control, regulation, etc.). A user-programmable block
called REXLANG is also available and exactly this block
has been used to implement the master part of the REX-
duino communication protocol. But all these details can
be kept hidden from the user, who simply works with a
function block and sets its parameters (see Fig. 2), which
define the behavior of individual IO pins of the Arduino
board. See section 4 for more details.

The REX Control System is closely connected to the
PIDlab.com and Contlab.eu portals and the REXduino
platform is the least expensive and the most straightfor-
ward way to test all the algorithms presented by these
portals in real world.



Arduino_UNO

DO2

DO3_PWM

DO4

DO5_PWM

DO6_PWM

DO9_PWM

DO10_PWM

DO11_PWM

DO12

DO13

DO_A0

DO_A1

DO_A2

DO_A3

DO_A4

DO_A5

CNT2R

CNT2E

CNT3R

CNT3E

userSend

iE
err_code

err_subcode
comm_status

DI2
DI3
DI4
DI5
DI6
DI7
DI8
DI9

DI10
DI11

DI_A0
DI_A1
DI_A2
DI_A3
DI_A4
DI_A5

AI0
AI1
AI2
AI3
AI4
AI5

CNT2
CNT3

OW_2_3_data
OW_4_5_data
OW_6_9_data

OW_10_11_data
OW_A0_A1_data
OW_A2_A3_data

userRecv

Fig. 2. Function block for Arduino UNO and its parame-
ters

Process value

PIDU

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

MDL

u y

CNR_setpoint

3.7

CNB_MAN_MODE

off

Fig. 3. Simulated PID control loop using the RexLib
function blocks

3. WORKFLOW

The use of the REXduino educational platform is very
easy, especially for users who are familiar with Simulink.
But neither knowledge nor license of Simulink is required
to get started with the development of real-time control
systems. Only the simulation phase is affected if Simulink
license is not available. The typical steps during the
development of control algorithm are described in the
following sections.

3.1 Pure simulation

The first step when creating control systems involve the
analysis of the controlled system followed by the design
of the control algorithm. The control algorithm is con-
structed from function blocks of the RexLib industrial
blockset. No programming skills are required, the user
just drags and drops blocks and connecting lines. A simple
PID control loop based on industry-proven algorithms can
be created within a few mouse clicks (see Fig. 3). The
controlled system is present in the form of a mathematical
model. The behavior and internal structure of the function
blocks is described in more detail in REX Controls [2013a].

3.2 The first physical interaction

As soon as the simulation results comply with all require-
ments, we can switch from simulation to physical world.
For this purpose only the Arduino board is used, it is
connected directly to desktop PC or notebook via the
USB cable. The model in the scheme is replaced by the
REXduino master block and a SLEEP block must be
introduced to run the control algorithm in ”real-time” (see
Fig. 4). The discrete numeric solver with fixed step size set

SLEEP

Process value

PIDU

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

CNR_setpoint

3.7

CNB_MAN_MODE

off

Arduino_UNO

DO2

DO3_PWM

DO4

DO5_PWM

DO6_PWM

DO9_PWM

DO10_PWM

DO11_PWM

DO12

DO13

DO_A0

DO_A1

DO_A2

DO_A3

DO_A4

DO_A5

CNT2R

CNT2E

CNT3R

CNT3E

userSend

iE
err_code

err_subcode
comm_status

DI2
DI3
DI4
DI5
DI6
DI7
DI8
DI9

DI10
DI11

DI_A0
DI_A1
DI_A2
DI_A3
DI_A4
DI_A5

AI0
AI1
AI2
AI3
AI4
AI5

CNT2
CNT3

OW_2_3_data
OW_4_5_data
OW_6_9_data

OW_10_11_data
OW_A0_A1_data
OW_A2_A3_data

userRecv

Fig. 4. PID control loop using the REXduino master block

to the same value as in the SLEEP block must be used.
The step size defines the sampling period of the control
algorithm.

The user can then execute the Simulink scheme just like in
the case of pure simulation, only the PID control algorithm
is now fed by real-world data acquired from the analog
input of the Arduino board and the manipulated variable
(output of the controller) is sent to PWM output.

This simple and straightforward step from simulation to
physical world is especially useful for control education
purposes as the students remain in the Simulink envi-
ronment which is familiar to them. Moreover, the tuning
of parameters or updating the control algorithm is very
quick, there is neither need to compile the project nor
transfer any files. Sampling frequencies of up to 50 Hz can
be used, which is sufficient for many educational plants.
The main factor limiting the sampling frequency is the
non-real-time behavior of Simulink running on a standard
PC.

This step would not be possible with Raspberry Pi-specific
interface board, which is a reason why the Arduino board
is so valuable for the REXduino educational platform.

3.3 Real-time control

The last step of creating a real-time control system is
deployment of the algorithm on the target platform. This
step is very easy with the REXduino platform as well,
the only thing the user has to do is to configure the real-
time executive of the REX Control System. The control
algorithm remains the same as in the previous step.

Configuration of the executive consists of defining the
target platform (Linux in the case of Raspbian) and the
execution period of the control algorithm. The control
algorithm from the previous step is referred to by the
TASK block connected to the Level0 output (see Fig. 7).
There can be more control tasks in general, and each
of them can have its own execution period and priority.
In Raspbian the REXduino platform allows sampling
frequencies of up to 200 Hz, depending on the complexity
of the control algorithm and number of input/output
signals.



The project is then compiled by the RexComp compiler
and sent to the Raspberry Pi, where it is executed by
RexCore, the runtime of the REX Control System.

Natural part of the REX Control System is the ability
to monitor the control algorithm in real-time and change
the parameters of individual function blocks. The on-line
monitoring via TCP/IP connection is available in the
RexView diagnostic program or directly in the RexDraw
development tool. The user is thus allowed to tune the
control algorithm in the loop, without the necessity to stop
it and compile it once again.

The REX Control System also offers advanced tools for
data storage and further processing. The measured data
and variables of the control algorithm are stored in the
memory of Raspberry Pi from where it can be retrieved
using the RexTrend utility. This utility reads the data
and exports them in various formats including M-file for
generating Matlab figures.

4. THE REXDUINO PROTOCOL

The REXduino protocol is a set of very simple commands,
which define the operating modes of individual Arduino
pins, set the outputs and read the inputs. Each command
is terminated by a semicolon.

In the initialization phase the REXduino master starts
communication and sends commands to change pin modes
to the desired ones. Once the REXduino slave reports that
all pins have been switched to the requested modes, the
master starts polling data and updating the outputs.

4.1 Pin modes

There are several modes the pins of the Arduino can be
configured for:

I - Digital input
This mode is used for reading on/off values.

J - Digital input with pullup
This mode is used for reading of e.g. buttons or switches
which connect the pin to ground only when pressed. If not
connected, the pin is pulled to HIGH state.

O - Digital output, default LOW
This mode is used for generating on/off signals and can be
used for powering of low-consumption circuitry. The pin is
set to LOW upon initialization.

Q - Digital output, default HIGH
In this case the output pin is set to HIGH by default.

A - Analog input
This mode is used for reading the 10-bit analog inputs of
the Arduino (pins A0 to An).

P - PWM output
In this mode the pin generates high-frequency pulses whose
duty cycle can be defined with 8-bit precision. Available
only on pins marked by ∼.

C - Counter
The counter mode is available on pins 2 and 3. It employs
interrupts and counts rising edges occurring on the pin.
Pins 4 and 5 in B mode define the counting direction for
pins 2 and 3 respectively.

E - Encoder signal A
This mode is used for evaluating encoder signals. It is
available on pins 2 and 3. Both rising and falling edges
of signal A trigger an interrupt routine. Signals on pins 4
and 5 in B mode are used to determine the direction of
rotation.

B - Encoder signal B or counter DIR
This mode is available on pins 4 and 5 and must be used
for proper function of counter/encoder mode on pins 2 and
3 respectively.

W - 1-Wire temperature
In this mode the pin serves as data input/output on 1-Wire
bus. The temperature sensors DS18B20, DS18S20 and
DS1822 are supported.

4.2 REXduino commands

Table 1 lists some of the commands and responses of
the REXduino protocol. Commands for reading or setting
more inputs/outputs by one command are not listed for
clarity. See REX Controls [2013b] for full description.

Initialize communication
Command: C 0 ;
Response: C ’0’ ;

Set pin mode
Command: M nPin mode ;
Response: M nPin mode ;

Read analog input
Command: A nPin ;
Response: A nPin BH BL ;

Set PWM output (analog output)
Command: P nPin value ;
Response: P nPin value ;

Read digital input
Command: I nPin ;
Response: I nPin state ;

Set digital output
Command: O nPin state ;
Response: O nPin state ;

Read 1-Wire temperature
Command: T nPin ;
Response: T nPin status ;
Response: T nPin status nS B1 B2 ;

Read counter or encoder value
Command: N nPin status ;
Response: N nPin status B1 B2 B3 B4 ;

User-defined command
Command: U B1 B2 B3 B4 ;
Response: U B1 B2 B3 B4 ;

Table 1. Commands of the REXduino protocol

The User-defined command is prepared for easy customiza-
tion of the platform for individual cases (custom func-
tions, communication with I2C or SPI devices, etc.). Both
REXduino master and slave implementations are open-
source thus it is quite easy to add arbitrary commands
and functionality.



Fig. 5. Communication with the REXduino slave from the
serial line monitor

Fig. 6. Motor-generator model controlled by the REX-
duino platform

The majority of commands exist in two versions. The first
one is used by computers and has been already listed in
Table 1. The other version of the command is lower-case
and is human-readable. It is intended for use in the serial
line monitor, which is useful for verification of hardware
connections to individual sensors as shown in Fig. 5.

5. EXAMPLES

5.1 Angular velocity control

The first system which can be controlled by the REXduino
platform is a motor-generator example. One DC motor
is controlled by PWM output of the Arduino which is
connected to the base of an NPN transistor switching the
current through the motor on and off. The other DC motor
is driven by the first one via an elastic belt and generates
current as it revolves (see Fig. 6).

Therefore the angular velocity of the generating motor
can be measured by the analog input of the Arduino. The
signal is very noisy so it is necessary to suppress the high
frequencies by a Kalman-filter based filter KDER first (see
Fig. 7 and then it is possible to close the angular velocity
PID control loop to suppress the repetitive disturbance
caused by the improperly aligned axis of the drive wheel.
The effect of PID control loop is evident from Fig. 8.

Fig. 7. Configuration of the real-time control algorithm in
the REX Control System

Fig. 8. Engaging the PID controller eliminates the mis-
alignment of the drive wheel

5.2 Laboratory helicopter control

Another application for the REXduino platform was the
retrofitting of an almost vintage CE150 laboratory heli-
copter model, which was originally controlled by a PC
equipped with an ISA plug-in card. The current version
of the model is controlled by a PCI card [Humusoft, 2013].

The helicopter is a 2x2 MIMO system, it has two propellers
whose speed can be controlled by PWM signals. The
elevation and horizontal rotation is measured by two
rotary encoders. The helicopter has also a movable mass
inside its body to allow dislocation of the centre of mass.
The location of the mass can be changed by a small motor
which is controlled by two digital outputs.

All these signals are available on the REXduino platform
therefore the conversion to the new control system was
straightforward and the model is fully functional after
many years in the cabinet.

Although the main propeller influences mainly the eleva-
tion, the azimuth is affected as well. The tail propeller also
influences both outputs having the main impact on the az-
imuth. In other words, there are significant crosscouplings
in the helicopter model.

A cascade of P and PID controller on each propeller with a
feedforward action derived from the other propeller allows
stabilization of the helicopter in the given elevation while
changing the azimuth, which is shown in Fig. 9.



Fig. 9. Stabilization of the helicopter model and azimuth
control

5.3 Electrical boiler control

The last example of use includes a set of DS18B20 1-Wire
temperature sensors connected to the Arduino, which
measure temperature in 5 rooms of a building as well as
the outside temperature and the heating and returning
water to the electrical boiler (Protherm Ray 12K). The
PWM output of the Arduino is used for defining the
desired temperature of the heating water and one digital
output is connected to a relay which replaces the original
thermostat.

The REXduino platform allowed to upgrade the heating
system from simple thermostat on/off control to advanced
equitherm control at negligible cost. Moreover, it allows
the owner to monitor the building and the boiler remotely
over the Internet.

6. OTHER USES OF THE REXDUINO PLATFORM

The REXduino platform is not limited to feedback control
tasks, it can be used on the model side in hardware-
in-the-loop simulations. The function block library of
the REX Control System contains also function blocks
for simulation of continuous-time systems, therefore it is
possible to create complex models of the real plants. Again
it is possible to change the parameters of the model in real-
time, inject disturbances, etc., so the control system can
be tested thoroughly.

Another field of application might be the control of batch
experiments, where some sequence of actions has to be
repeated (e.g. switching the lamps on and off at given
intervals, opening a valve when target temperature is
reached, etc.). Plus it can serve as a datalogger during
the experiments as all the measured data can be stored in
the RAM or on the SD card of the Raspberry Pi.

Beyond the scope of the REXduino educational platform,
it is also possible to install additional drivers of the
REX Control System to the Raspberry Pi to enhance its
features. The Raspberry Pi can then act as Modbus TCP
Master or Slave and exchange data with true industrial
I/O devices.

7. HOLY GRAIL IN CONTROL EDUCATION?

The educational platform consisting of an Arduino board,
Raspberry Pi computer and the REX Control System pre-
sented in this paper opens an extremely inexpensive and
straightforward path from simulation to real-time physical
computing and control. The platform requires negligible
initial knowledge in programming, electronics, control the-
ory or industrial communication standards therefore the
student’s first on/off control loop can be closed within min-
utes, which encourages the student and raises the interest.
The platform is very open so it offers enough opportunities
for in-depth study in any of the above mentioned fields
once the student decides to do so. Both students and aca-
demicians benefit from very simple interface, steep learn-
ing curve and compatibility with Simulink and the PID-
lab.com and Contlab.eu portals. The price/performance
ratio is also excellent therefore the authors believe that
the platform might be considered (with a little bit of
exaggeration) the Holy Grail in control education.

REFERENCES

Arduino. Arduino open-source prototyping platform.
http://www.arduino.cc, 2012.

Pavel Balda, Miloš Schlegel, and Milan Štětina. Ad-
vanced control algorithms + Simulink compatibility +
Real–time OS = REX. In Preprints of the 16th IFAC
World Congress, Prague, Czech Republic, 2005.

Humusoft. CE150 helicopter model.
http://www.humusoft.cz/produkty/models/ce150/,
2013.

Quick2Wire. Quick2Wire Interface Board.
http://www.quick2wire.com, 2012.

REX Controls. REX system function blocks – reference
manual, 2.07 edition, 2013a.

REX Controls. REXduino protocol – user guide, 2.07
edition, 2013b.

The Raspberry Pi Foundation. Gertboard.
http://www.raspberrypi.org/archives/tag/gertboard,
2012a.

The Raspberry Pi Foundation. Raspberry Pi.
http://www.raspberrypi.org, 2012b.

University of Manchester. Pi-Face Digital Interface.
http://pi.cs.man.ac.uk/interface.htm, 2012.


